
会员
统计学习必学的十个问题:理论与实践
更新时间:2022-07-28 20:05:53 最新章节:参考文献
书籍简介
统计学习是机器学习的重要分支,本书兼顾了数学上的理论和代码实践,内容主要包括基础知识和统计学习模型。第1章、第2章结合VC维介绍过拟合的本质,并介绍手动特征选择的办法;第3章、第4章从最简单的线性模型出发经过概率统计的解读而得到分类和回归算法;第5章讨论不依赖于假设分布的非参数模型;第6章介绍将核方法作为一种非线性拓展的技巧,介绍如何将该方法应用到很多算法中,并引出了著名的高斯过程;第7章以混合高斯作为软分配聚类的代表性方法,从而引出著名的EM算法;第8章讨论了机器学习的集成算法;第9章介绍的线性和非线性降维方法将会解决维度灾难问题,并且不同于单纯的特征选择;第10章讨论不依赖于独立同分布假设的时间序列算法。
品牌:清华大学
上架时间:2021-06-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
李轩涯 张暐
- 会员本书兼顾了数学上的理解和代码实践,内容主要包括基础知识和深度学习模型。第1章介绍深度学习的简洁发展思路和表示学习机制;第2章、第3章介绍神经网络的基于梯度的优化方法、神经网络的优化难点以及相应的解决方法;第4章讨论神经网络遇到的过拟合问题;第5章分析神经网络的最小组成部分:神经元;第6章讨论三种方案解决深层网络的训练难题:批标准化、SELU、ResNet;第7章、第8章讲述了两种重要的神经网络模型人工智能5.1万字
最新上架
- 会员近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字
- 会员本书通过对10款人工智能应用的介绍及调试,帮助读者快速掌握人工智能辅助文案变现的方式。本书共10章,分别讲解AI智能创作,AI爆款文案写作工具,人工智能辅助泛流量文案、泛商业文案、私域文案创作,利用人工智能实现文案变现的底层逻辑,以及在今日头条、百家号、小红书、知乎等平台及不同展示形式下进行文案创作的实战案例等。计算机12.2万字
- 会员本书是一本面向产品经理的实用新书,分12章探讨如何用ChatGPT提升产品管理工作的效率和质量。第1章介绍了人工智能对产品管理的影响;第2章介绍用ChatGPT提高文档写作效率;第3章介绍用ChatGPT进行竞品和市场分析;第4章介绍用ChatGPT优化需求管理;第5章介绍用ChatGPT分析产品数据;第6章介绍用ChatGPT改进用户体验;第7章介绍用ChatGPT设计产品原型;第8章介绍用Ch计算机11.5万字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字
- 会员本书从写作与ChatGPT的基础知识讲起,结合创作者的实际写作经历与写作教学经历,介绍了用ChatGPT写作的基础技巧、进阶写作的方法、不同文体的写作方法、写作变现的秘诀,让读者理解写作技巧与变现思路。计算机14.7万字
- 会员本书全面、系统地探讨科学计算的背景、机器学习的重要性以及昇思MindSpore框架在科学计算中的广泛应用。科学计算作为一门交叉学科,融合了数学、计算机科学与技术等领域的专业知识,在现代科学研究和工程实践中起着关键作用。本书以MindSpore为平台,深入研究这一全场景AI框架在科学计算中的探索与实践,通过对基础理论、行业应用和实际案例的详细介绍,为读者提供全方位的学习和参考资料。全书共8章,首先详计算机15.7万字
- 会员这是一本全面介绍AI应用的实用工具书,旨在为不同行业的专业人士提供实用的AI使用方法和策略。本书用简单易懂的语言解释了AI的基本工作原理,详细介绍了20多个通用AI指令,并通过案例展示如何运用这些指令解决工作问题;提供了AI在文案写作、数据处理、编程、教学和科研等场景中的实战应用案例,同时还提供了商业级解决方案和企业应用案例。本书既有AI应用的通用原则和方法,又有具体的流程步骤和样例演示,还提供了计算机5.5万字
- 会员本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型计算机12.2万字