
会员
深度学习详解:基于李宏毅老师“机器学习”课程
更新时间:2024-09-23 17:54:56 最新章节:索引
书籍简介
本书根据李宏毅老师“机器学习”公开课中与深度学习相关的内容编写而成,介绍了卷积神经网络、Transformer、生成模型、自监督学习(包括BERT和GPT)等深度学习常见算法,并讲解了对抗攻击、领域自适应、强化学习、元学习、终身学习、网络压缩等深度学习相关的进阶算法.在理论严谨的基础上,本书保留了公开课中大量生动有趣的例子,帮助读者从生活化的角度理解深度学习的概念、建模过程和核心算法细节.
品牌:人邮图书
上架时间:2024-09-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
王琦 杨毅远 江季编著
最新上架
- 会员大模型在众多领域得到了广泛应用,促进了AI技术的整合和创新。然而,在实际应用过程中,直接将大模型应用于特定行业常常难以达到预期效果。本书详细阐述如何在游戏经营分析场景中利用大模型实现数据体系的建设。本书分为6个部分,共16章。第1部分主要介绍大模型技术的发展与应用,从大模型的发展现状展开,重点介绍大模型与数据体系的相关知识。第2部分主要介绍大模型下的关键基础设施,涵盖湖仓一体引擎、湖仓的关键技术、计算机15.6万字
- 会员本书从ChatGPT的基础知识讲起,针对运营工作中的各种痛点,结合实战案例,如文案写作、图片制作、社交媒体运营、爆款视频文案、私域推广、广告策划、电商平台高效运营等,教会读者如何使用ChatGPT进行智能化工作;还介绍了通过ChatGPT配合Midjourney、D-ID等AI软件的使用,进一步帮助提高运营工作的效率。计算机11.3万字
- 会员《秒懂AI写作:让你轻松成为写作高手》针对职场、学习、生活、艺术创作领域常见的40余种写作应用场景,遵循“场景+方法+总结”的框架,详细介绍了如何正确利用AI完成多种写作任务,并归纳出使用AI写作的方法和技巧。《秒懂AI写作:让你轻松成为写作高手》分为6章。第1章通过5个步骤、6大场景介绍了如何驾驭AI完成多种类型的写作任务;第2章至第6章分别详细介绍了在职场应用文写作、商业营销文案写作、新媒体写计算机8.1万字
- 会员我们在运用AI的时候,有时得不到自己想要的回答,于是责怪AI不够智能。我们容易忽略的是,AI的回答质量往往取决于提问的质量。《秒懂AI提问:让人工智能成为你的效率神器》系统地介绍了20种向AI提问的有效方法,用这些方法可以让AI给出高质量的回答。在介绍提问方法时,本书紧扣日常工作和生活,并通过对比让读者直观感受不同提问方法的效果,最后引出更多场景下的应用,让读者真正学以致用。《秒懂AI提问:让人工计算机5.4万字
- 会员这是一本面向初中级读者的Agent学习指南,作者既是资深的AI技术专家,又是经验丰富的项目导师,融合作者亲身实践、培训反馈与官方资源,为Agent使用者和开发者提供了快速上手的实用指导。本书从基础知识、操作和应用开发3个维度循序渐进地讲解Agent实战技巧,分为三篇:基础篇(1~2章):介绍Agent定义、发展历程、常用开源技术、主要组件等基础知识和开发环境的搭建过程。应用篇(3~6章):从通用型计算机7.2万字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字
- 会员本书共十一章,主要包含四部分:第1章解读ChatGPT的基础原理和提示工程的基本概念;第2至5章介绍提示工程技巧,涵盖有效提示编写、针对复杂任务的提示设计技巧、对话中的提示设计技巧,以及提示的优化与迭代;第6章主要介绍当前ChatGPT推出的进阶功能;第7至11章结合教育领域、市场营销、新媒体运营、软件开发和数据分析实战展示提示工程技巧的应用。计算机12.9万字
- 会员本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字
- 会员近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字