2.2 矩阵的张量积
对于n阶矩阵A={aij}和m阶矩阵B={bkl},可定义矩阵的张量积(又称Kronecker积)为
![](https://epubservercos.yuewen.com/4A9B15/31398213203083006/epubprivate/OEBPS/Images/Figure-P22_7981.jpg?sign=1739233478-9F2lFhg4GGzNNd5IXlFWRShyJ925D8Ob-0-d4b354c2e3bbc24fad28ad1799e1b0fc)
(1)Kronecker积运算满足双线性和结合律:若A与B是相同维数的矩阵,则有
![](https://epubservercos.yuewen.com/4A9B15/31398213203083006/epubprivate/OEBPS/Images/Figure-P22_7983.jpg?sign=1739233478-PVQeXPf7UAN9QQcJ94FEoLnzncXWQTCd-0-6c1482b83b5f2fb3f2de48da16aa7d4c)
(2)Kronecker积运算具有混合乘积性质:若在4个矩阵A、B、C和D中,矩阵乘积AC和BD都存在,则有
![](https://epubservercos.yuewen.com/4A9B15/31398213203083006/epubprivate/OEBPS/Images/Figure-P22_7985.jpg?sign=1739233478-M7fscRLs57LoLghmaWupBvRFzDWwIpvU-0-c61e0db90a4fe5684a829fb59ffb5440)
假设C取A-1,D取B-1,则有
![](https://epubservercos.yuewen.com/4A9B15/31398213203083006/epubprivate/OEBPS/Images/Figure-P22_7987.jpg?sign=1739233478-n62BMoCT99wBODL5PVztKAaoT0oS6Ttm-0-dbdaa1763497c235faa330647b82b395)
例如,对于一个相互独立的双量子比特系统(没有纠缠),各自作用一个酉算子,有
![](https://epubservercos.yuewen.com/4A9B15/31398213203083006/epubprivate/OEBPS/Images/Figure-P22_7989.jpg?sign=1739233478-yycXi9XBFFnhoASOKXiFkEtCTR6aEkV9-0-8819c3ab232a622b2f8ef33984f00837)
(3)Kronecker积转置运算符合分配律:若A和B是两个矩阵,则有
![](https://epubservercos.yuewen.com/4A9B15/31398213203083006/epubprivate/OEBPS/Images/Figure-P22_7991.jpg?sign=1739233478-4qI2RT7gAFPdVNy6an0WFfmjJWbMCQn7-0-8fd221a37165e033e8e8e9bb0f3d8c8d)