前言
无穷多个数相加应该怎么求?0.99999……为什么等于1?导数和微分有什么区别?微积分基本定理的本质是什么?数学到底是一种发现还是发明?
各位读者朋友,大家好!很高兴和大家相逢在《从零开始读懂微积分》这本书中。本书的基础是我为北京国家应用数学中心制作的应用数学与数据科学通识基础课程——《高等数学导览》的讲义。我曾经在“知乎”上写过一个专栏,名叫《奇葩数学史·中学篇》,写那个专栏的初衷是想为中学数学的教学内容补充一些课堂上大家可能没有机会了解的知识背景和专业延伸。专栏完结之后,我收到一些读者的来信,询问什么时候推出大学篇。我想,为北京国家应用数学中心制作的视频课程可以看作对这个问题的正面回答。
提起高等数学,这可能是大学里最令人头疼的一门课程,它有趣却又难解,深刻却又复杂,想敬而远之,它偏偏应用广泛、无处不在,不管是物理、计算机这样的理工类专业,还是经济、管理这样的社科类专业,都逃不开以高等数学作为进一步学习的基础。然而,高等数学似乎与我们之前学过的数学完全不同,学着学着就找不着北了;一开始大家都还兴致勃勃,向着理解宇宙最深刻奥义的梦想出发,到后来,大部分人都只能疲于奔命,考研上岸成了最后的愿望。
高等数学的主要内容是微积分,我们为广大数学爱好者准备了这样一本伴读手册,它既是微积分课堂教学的有益补充,也是一次轻松愉快的数学之旅。通过精讲一批重要的数学地标和风景,将课本中若干重要的概念、方法及其背景和延伸做一个梳理和总结。它既包含课堂上没有时间讲授的数学通识内容,又包含对一些复杂知识点的细致拆解,以及微积分在现实生活中的实际应用。希望通过对本书的研读,大家可以对微积分从理论到实践有一个初步的认识,提高大家学习后继专业课程的兴趣和能力。
坦白讲,编写这样一本伴读手册并非易事,在组织材料的时候,我们需要考虑三个逻辑:一是数学本身的逻辑;二是数学理论发展的逻辑;三是课程讲授的逻辑。课程讲授的逻辑决定了课程最终的呈现方式,它受课程的目的、目标听众、教师的个人偏好等因素影响。尽管情况比较复杂,但大多数数学课程往往是前两种逻辑的简单组合。
在高等数学课堂上,我们更多地接触到的是遵循第一种逻辑的教材,从数列极限讲到函数极限,从导数讲到微分,从不定积分讲到定积分,从一元函数微积分讲到多元函数微积分,从概念引入到性质推导,从定理证明到例题演算,循序渐进。为什么大家都这么做呢?因为它清晰准确、易于标准化,适合大范围应用和推广,在教育普及的过程中能够发挥巨大的作用。
随着时代的发展,这种处理方式也暴露出一些问题。我们经常听数学老师说:“我现在讲的是思路,你们写答案的时候要反过来写!”都听过吧?什么意思呢?从某种意义上说,数学知识本身的逻辑是一种“反思考”的逻辑,它与人们从“拆解问题”到“组装答案”的习惯性思考过程是不一致的,掌握起来势必要克服额外的阻力。从宏观角度来看,一本教材或一门课程其实也是如此。从定义1、2、3出发,之后是性质4、5、6,然后是定理7、8、9,最后是例题A、B、C、D、E、F、G,这种流水线式的讲授方式并不是从思考的逻辑出发的;尽管这种讲授方式很准确,却给学生消化和理解知识制造了障碍。
在这本书里,我希望遵循思考的逻辑,用30章的篇幅为大家梳理微积分理论中一系列重要概念和知识点,以及它们的背景和拓展应用,内容共分为以下四篇。
第一篇是数学通识,大家将从这里了解一些关于数学的基本观点和事实,如绝大部分人的数学天赋都不怎么样,人类发展出伟大的数学能力是因为想象力;数学是一种自洽的语言,在语言的抽象与还原之间需要求得一种恰到好处的平衡;数学的发展依赖经验,但数学不是经验科学,数学的本质是求真而非证伪;学好数学可以尝试把握三个要素:逻辑感、结构感知力、求知的本心。有了这些认识,大家就能对数学进行更加深入的思考。
第二篇是原理铺垫,我将回答以下两个基本的问题:高等数学何以称为高等?高等数学与中学数学相比,是否存在一个明确的分水岭?如果这个分水岭真的存在,了解它在哪里,可以避免大家在一开始就被完全不一样的思维方式“打趴下”。
第三篇是本书的核心,我将以“局部—整体”为主线讨论微积分理论的核心要义和基本框架,包括函数极限、连续性、无穷小及其比较、导数与微分、微积分基本定理、多元函数微积分等,大家将充分领略高等数学中最为华美的一篇乐章。
第四篇是微积分的实践之路,内容包括泰勒展开、傅里叶展开、最小作用量原理,以及极值问题在数学、工程学、人工智能等领域的应用。例子虽然不多,但力求简洁深刻,讲通讲透,希望研读这个板块之后,大家会对“高数”有一种完全不同的观感。
由于本书的基础是已有课程的讲义,尽管做了必要的整理和修订,部分内容与“知乎”专栏还是存在重合。为了课程的完整性,我将这些重合的内容保留在本书中,希望不会给已经看过专栏的小伙伴们带来困扰。最后,我还想强调,这是一本帮助大家修习高等数学的伴读手册,它不能代替正式的课堂教学,如果大家想在“高数”这门课上取得不错的成绩,看完本书之后记得回到课堂好好学习。
好了,亲爱的读者朋友,欢迎来到《从零开始读懂微积分》,祝愿大家在这里能够收获一份美好的体验。
本书献给我的太太及我可爱的女儿。
唐舜
温馨提示:本书提供的附赠资源,读者可以通过扫描封底二维码,关注“博雅读书社”微信公众号,输入本书77页的资源下载码,根据提示获取。
资源下载码:202425